Vědci s pomocí obřího urychlovače LHC objevili novou subatomární částici, chi_b (3P)

23. 12. 2011
Částicová fyzika LHC CERN

Vůbec první subatomární částici objevili vědci prostřednictvím obřího hadronového urychlovače (Large Hadron Colider, LHC). Nová částice se jmenuje chi_b (3P) a jde o již známou částici chi v excitovaném stavu. Vědci očekávali, že by částice chi měla existovat také v tomto excitovaném (vybuzeném) stavu, doposud ji ale nikdo nepozoroval. To se až teď podařilo týmu vědců z CERNu, kteří pracují s detektorem Atlas na urychlovači LHC.

LHC

LHC - schéma konstrukce trubice velkého hadronového urychlovače (Large Hardon Colider - LHC).



Chi_b (3P) se skládá s krásného kvarku a krásného antikvarku, které jsou spojeny dohromady. Tento objev umožní vědcům doplnit další díru do standardního modelu, který se snaží popsat subatomární svět kolem nás. K tomuto účelu slouží právě LHC, který urychluje částice téměř k rychlosti světla, a při jejich srážkách zjišťuje z čeho se skládají.

Objevy podobných částic jako je chi_b (3P) pomáhají vědcům v pochopení fungování subatomárního světa. Tato nová částice svým významem sice nepřekoná slavný higgsův boson, nicméně doplňuje mozaiku subatomárních částic.
Líbil se Vám tento článek?

Podpořte tento web sdílením našeho obsahu.

Chcete vědět o dalším článku?

Následujte nás na sociálních sítích.

Další zprávy z kategorie Částicová fyzika

Vědci ve Fermilabu mohli poprvé zkoumat jádra atomů pomocí neutrin se známou energií

15. 04. 2018 (novější než zobrazený článek)

Neutrina jsou subatomární částice bez elektrického náboje, které reagují s okolní hmotou pouze skrze slabou nukleární sílu. Díky této jejich podstatě jsou zajímavým nástrojem na zkoumání jader atomů, je však velmi obtížné změřit jejich energii, což je při zkoumání kolizí s atomy poměrně důležitá informace. Tento kousek se nyní poprvé podařil vědcům v americké laboratoři Fermilab. V rámci experimentu MiniBooNE použili neutrina, která měla energii přesně 236 MeV.

celý článek

Fyzikům se podařilo poprvé sestavit bizarní molekulu zvanou Rydbergův polaron

08. 03. 2018 (novější než zobrazený článek)

Pomocí laserů se americkým a rakouským vědcům podařilo přeskupit velmi chladné atomy stroncia do komplexní struktury, která není v běžném prostředí k vidění - Rydbergova polaronu. "Objevili jsme nový způsob, jakým se atomy sestavují do molekul" říká fyzik Tom Killian z Rice University (USA), který vedl studii publikovanou v magazínu Physical Review Letters. Na teoretických podkladech pro experiment pracovali vědci na Vienna University of Technology a Harvard University.

celý článek

Vědci vytvořili zcela novou formu světla, má tři fotony v jedné částici

19. 02. 2018 (novější než zobrazený článek)

Vědci vytvořili zcela novou formu světla, má tři fotony v jedné částiciVědcům se v experimentu podařilo prokázat novou formu světla, kdy se jednotlivé fotony vážou do trojic. Vytvořené trojfotony tvoří základ doposud neprobádané fotonické hmoty, která zatím nebyla pozorována ani v přírodě, ani v experimentech. Tento úspěch by mohl vést k použití fotonů v kvantových výpočtech, nebo dalším, doteď netušeným, možnostem. Výsledky týmu vědců z MIT, Harvard University a dalších institucí vedeném Vladanem Vuletićem a Mikhailem Lukinem byly publikovány v únorovém čísle magazínu Science.

celý článek

Experimenty s intenzivními lasery poskytují první důkazy, že pomocí světla lze zastavit elektrony

12. 02. 2018 (novější než zobrazený článek)

Ozařováním elektronů ultra-intenzivním laserem se vědcům podařilo překročit hranice běžné fyziky a přiblížit se kvantovým efektům. Když světlo dopadá na nějaký objekt, část záření se od něj odráží, pokud se však objekt pohybuje velmi rychle a světlo je velmi intenzivní, začnou se dít podivné věci. Například elektrony se mohou natolik rozvibrovat, že zpomalí, protože vibrace spotřebují velké množství energie. Podobný efekt vědci předpokládají také například u černých děr. Týmu na Imperial College London se podařilo provést tuto reakci poprvé v laboratorních podmínkách, výsledky jejich práce byly publikovány v magazínu Physical Review X.

celý článek

Tři typy vysokoenergetických částic z vesmíru mají stejný původ - v aktivních jádrech galaxií

24. 01. 2018 (novější než zobrazený článek)

Tři typy vysokoenergetických částic z vesmíru mají stejný původ - v aktivních jádrech galaxiíVědcům z Pennsylvania State University a University of Maryland se podařilo vysvětlit původ hned tří typů subatomárních částic, které k nám přicházejí z vesmíru. Jde o vysokoenergetická neutrina, extrémně energetické kosmické záření a vysokoenergetické gama záření. Všechny tři pravděpodobně pocházejí ze supermasivních černých děr, konkrétně z proudů radiace, které vycházejí z jejich pólů. Výsledky výzkumu byly v lednu publikovány v magazínu Nature Physics.

celý článek

Vědcům se podařilo prokázat nové skupenství hmoty - excitonium

10. 12. 2017 (novější než zobrazený článek)

Vědcům se podařilo prokázat nové skupenství hmoty - excitoniumSkupenství hmoty excitonium bylo teoreticky předpovězeno už v 70. letech a jeho existence byla pozorována nepřímými důkazy, jde o tzv. Boseho-Einsteinův kondenzát tvořený excitony. Týmu vědců pod vedením profesora Petera Abbamonteho se nyní podařilo přijít s novými důkazy, které existenci excitonia jasně prokazují. Pomohla jim k tomu nová technika nazývaná M-EELS (Momentum-resolved Electron Energy-Loss Spectroscopy), kterou si sami vyvinuli pro měření nízkoenergetických bosonů. Výsledky výzkumu byly publikovány ve vědeckém magazínu Science v prosinci.

celý článek

Měření observatoře na jižním pólu ukazují, že Země absorbuje energetická neutrina

26. 11. 2017 (novější než zobrazený článek)

Podle studie publikované v listopadovém vydání magazínu Nature jsou neutrina na své cestě absorbovaná v naší planetě. Aturoři studie tak usuzují z měření částicového detektoru IceCube umístěného nedaleko jižního pólu. Neutrina jsou subatomární částice, které procházejí v obrovských množstvích veškerou hmotou, u těch vysoce energetických však dochází k interakcím s protony a neutrony. Pozorované chování neutrin odpovídá předpovědím standardního modelu částicové fyziky.

celý článek