Pozorování observatoře IceCube vylučuje záblesky gamma záření jako zdroj kosmického záření

19. 4. 2012
Neutrina Gama záření Antarktida Antarktida

Vědci z antarktické neutrinové observatoře IceCube přišli s novými poznatky o zdroji kosmického záření, jejich studie dnes vyšla v magazínu Nature. Podle studie nemohou být záblesky gamma záření původcem kosmického záření, a jako nejpravděpodobnější zdroj se teď jeví černé díry.

Observatoř IceCube

Observatoř IceCube Pozorovací stanice umístěná na jižním půlu v Antarktidě, jejím cílem je detekce neutrin.



Kosmické záření je proud vysoce energetických částic z hlubin vesmíru, o jeho objev se před sto lety zasloužil rakouský fyzik Victor Franz Hess. Co je původem tohoto záření bylo po uplynulé století předmětem vášnivých debat, ze kterých nakonec vzešly dvě převažující teorie. Podle nich měly být zdrojem kosmického záření buďto tzv. záblesky gamma záření, které jsou způsobeny těmi největšími explozemi ve vesmíru, nebo černé díry. 

Záblesky gamma záření (Gamma-ray Burst, GRB) jsou největšími známými explozemi ve vesmíru, které trvají pouhých pár sekund, během nich se však uvolní nesmírné množství energie. Jejich původcem jsou kolapsy extrémně masivních hvězd po nichž zůstává pouze neutronová hvězda nebo černá díra. Vědci se domnívali, že právě tyto obří exploze mohly být původcem jak vysoce energetických částic kosmického záření tak těch nejenergetičtějších neutrin, které kosmické záření doprovází.

Při pozorování observatoře IceCube však u více než tří stovek pozorovaných GRB neutrina nalezena nebyla, to by naznačovalo, že GRB nejsou původcem kosmického záření. Tím by tak mohly být supermasivní černé díry, které by svou nepředstavitelnou gravitací mohly urychlovat částice nesmírněkrát více než dokáže například LHC v CERNu.

Observatoř IceCube nedaleko jižního pólu je prvním podobným zařízením, které vědcům umožňuje zaměřit se na konkrétní místo na obloze a s pomocí detekce neutrin o něm něco říct. Vědci při svém výzkumu využili také data z vesmírných teleskopů Swift a Fermi.
Líbil se Vám tento článek?

Podpořte tento web sdílením našeho obsahu:

Chcete vědět o dalším článku?

Následujte LIVINGfUTURE na sociálních sítích.


Další zprávy z kategorie Neutrina

Observatoře v USA a Evropě zachytily výjimečně krátkou gravitační vlnu - vědci neví, co ji mohlo způsobit

24. 1. 2020 (novější než zobrazený článek)

14. ledna astronomové zachytili gravitační vlnu, jakou dosud neviděli: trvala pouhý zlomek sekundy. Od ostatních detekcí se tím liší a vědci zatím neví proč. Je pravděpodobné, že tato detekovaná deformace prostoru má zcela jiného původce než kolizi černých děr nebo neutronových hvězd, které byly zdrojem v ostatních případech.

celý článek

Neutrino s vysokou energií by mohlo pocházet z binární supermasivní černé díry

10. 10. 2019 (novější než zobrazený článek)

V roce 2017 se vědcům podařilo poprvé identifikovat zdroj vysokoenergetických neutrin z hlubokého vesmíru. Přišlo k nám z 3,8 miliard světelných let vzdáleného blazaru TXS 0506+056, ten však dodnes zůstává jediným zdrojem tohoto druhu neutrin a vědci zřejmě přišli na to proč: v jádru této galaxie se totiž zřejmě nachází vzácná binární supermasivní černá díra.

celý článek

Německý experiment výrazně zpřesnil odhadovanou maximální hmotnost neutrin

18. 9. 2019 (novější než zobrazený článek)

Němečtí vědci zveřejnili výsledky prvních několika týdnů provozu experimentu KATRIN, který studuje neutrina. Podle jejich studie je maximální hmotnost neutrina 1,1 eV, což je výrazné zpřesnění oproti předchozí hodnotě 2 eV. Zjistit hmotnost neutrin je složité, protože jen slabě reagují se svým okolím, vědci tak zatím pouze odhadují jejich maximální hmotnost.

celý článek

Detektor temné hmoty pozoroval vzácnou subatomární reakci neutrin

25. 4. 2019 (novější než zobrazený článek)

Zařízení XENON1T navržené speciálně pro detekci temné hmoty pozoruje něco, na co nebylo zrovna postavené: vzácnou reakci dvojitého elektronového záchytu a emisi dvou neutrin. Neutrina by mohla být po fotonech druhým nejčastějším prvkem ve vesmíru, nicméně příliš nereagují s běžnou hmotou a jsou tak téměř nepozorovatelná. Pozorovaná reakce a nový výzkum by nám o nich mohly říct mnoho nového.

celý článek

Observatoř na jižním pólu detekovala částici, kterou si vědci neumí vysvětlit

2. 10. 2018 (novější než zobrazený článek)

Observatoř na jižním pólu detekovala částici, kterou si vědci neumí vysvětlitObservatoř ANITA umístěná v balónu nad jižním pólem Země detekovala za posledních 13 let dvakrát zvláštní událost, kterou si vědci zatím nedokáží vysvětlit. Jde o subatomární částici, která proletěla atmosférou, dopadla na povrch naší planety, proletěla jejím jádrem a vydala se zpět do atmosféry a do vesmíru. Při svojí cestě Zemí vygenerovala velmi slabé pulzy rádiových vln, které zachytila observatoř více než 30 kilometrů nad povrchem Antarktidy.

celý článek

Observatoř na Antarktidě potvrzuje, že černé díry jsou zdrojem vysokoenergetických neutrin

13. 7. 2018 (novější než zobrazený článek)

Observatoř na Antarktidě potvrzuje, že černé díry jsou zdrojem vysokoenergetických neutrinS pomocí detektoru neutrin na jižním pólu IceCube se vědcům podařilo poprvé detekovat zdroj vysokoenergetických neutrin, je jím vzdálená supermasivní černá díra TXS 0506+056. Neutrina jsou subatomární částice, které jen zřídka interagují se hmotou a není tak jednoduché je zachytit. Neutrina vznikají například ve hvězdách, supernovách nebo při jaderných reakcích. Zdroj vysokoenergetických neutrin však byl doposud neznámý, nebo alespoň nebyl potvrzený. Podle nové studie mohou vznikat právě v černých dírách v jádru masivních galaxií.

celý článek

Vědci ve Fermilabu mohli poprvé zkoumat jádra atomů pomocí neutrin se známou energií

15. 4. 2018 (novější než zobrazený článek)

Neutrina jsou subatomární částice bez elektrického náboje, které reagují s okolní hmotou pouze skrze slabou nukleární sílu. Díky této jejich podstatě jsou zajímavým nástrojem na zkoumání jader atomů, je však velmi obtížné změřit jejich energii, což je při zkoumání kolizí s atomy poměrně důležitá informace. Tento kousek se nyní poprvé podařil vědcům v americké laboratoři Fermilab. V rámci experimentu MiniBooNE použili neutrina, která měla energii přesně 236 MeV.

celý článek