Podle nové Hawkingovy studie černé díry neexistují, alespoň ne tak, jak je známe

26. 01. 2014
Černé díry Teoretická fyzika Sagittarius A*

Britský teoretický fyzik Stephen Hawking znovu rozvířil vlny světa černých děr se svou novou studií, kterou publikoval ve středu 22. ledna. Hawking věnoval podstatnou část svého života studiu objektů s tak velkou gravitací, že jim neunikne ani světlo. Jeho poslední práce ale jejich existenci de facto popírá. Jak tomu tedy ve skutečnosti je? A co vlastně dřímá v centru naší galaxie, kde, jak astronomové tvrdí, leží obří nepředstavitelné monstrum, kterému říkají supermasivní černá díra?

Sagittaruis A*

Sagittaruis A* - Záblesk rentgenové radiace, který zachytil vesmírný teleskop NuSTAR. Bílá oblast ve středu snímku je extrémně horká hmota rotující nejblíž černé díře. V okolí jsou potom zbytky jiných hvězd, jejich planet a oblaků plynů. Po pravé straně je časový průběh rentgenového záblesku jak jej pozoroval teleskop NuSTAR.



Co vlastně černé díry jsou?
Hvězdy dosahují různých velikostí. V těch nejmenších sotva probíhá termojaderná reakce a tak téměř nesvítí. Ve větších hvězdách, které jsou svou masou podobné slunci, dochází ke slučování atomů vodíku a vzniku helia, při této reakci dochází k uvolňování velkého množství energie, které se projevuje tím, že hvězda svítí. Existují i větší hvězdy, s ještě větší gravitací než má naše slunce, existují tak velké hvězdy, jejichž obří gravitace jim umožňuje slučovat atomy helia do ještě těžších prvků. No a potom existují superobří objekty s tak nepředstavitelnou gravitační silou, že jejich spárům nedokážou uniknout ani nehmotné fotony. Tyto "hvězdy" známe jako černé díry, kterým neunikne nic, ani světlo, a astronomové už našli množství objektů, jejichž okolí se chová tak, jako by se nacházely v blízkosti černé díry.
Svět teoretických paradoxů
Černota černých děr je tedy dána faktem, že jejich gravitaci nemá uniknout nic. Tedy nejen světlo, ale také žádná informace, což byl vždy problém pro kvantové fyziky, informace o hmotě - tedy i ta, která spadne do černé díry - by totiž měla být zachována. Kolem černých děr tak vzniklo několik paradoxů, které se fyzikové snaží alespoň teoreticky vysvětlit, přímá pozorování totiž, už ze samotné definice černých děr, nejsou možná. Většina teoretických fyziků se nakonec shodla na tom, že na vnějším povrchu horizontu události vzniká (hawkingova) radiace, která vyzařuje do okolního vesmíru. Tato radiace vzniká z kvantového principu a má mít za důsledek postupné zmenšování černé díry až její úplné vypaření. Ke ztrátě informace tedy nedochází, protože je v podobě radiace vyzařována do okolí černé díry. V roce 2012 se však objevil nový paradox, paradox ohnivé zdi (firewall paradox), se kterým přišla skupina vědců z University of California in Santa Barbara vedená Josephem Polchinskim. Podle tohoto paradoxu, pokud hawkingova radiace skutečně obklopuje horizont události, musí sežehnout všechno, co se k horizontu přiblíží. To je ale opět v rozporu s přístupem obecné relativity, která předpokládá nedramatický průběh při průchodu horizontem události. Tedy ve zkratce: opět nesoulad mezi přístupem kvantové fyziky a obecné relativity.
Poslední teorie
Tuto situaci se teď Hawking pokouší vyřešit opuštěním zavedeného konceptu horizontu události a nahrazuje jej zdánlivým horizontem (apparent horizon). Jde o podobný typ hranice, která vyznačuje prostor kolem masivního objektu, ze kterého není kvůli velké gravitaci úniku s jedním důležitým rozdílem: zdánlivý horizont mění svůj tvar. V takovémto okolí černé díry může informace, která překročila hranici zdánlivého horizontu, ještě pořád uniknout, protože se může ocitnout mimo zdánlivý horizont v případě, že dojde ke změně jeho tvaru v důsledku kvantových fluktuací uvnitř. Nová hawkingova teorie má ale jeden háček, prostor za zdánlivým horizontem události informaci změní a ta se stává chaotickou natolik, že ji prakticky není možné zpětně dekódovat. Nedochází tak ke ztrátě informace jako takové, nicméně její interpretace je v podstatě nemožná. Na to reagoval Polchinski větou "Skoro to zní, jako by Hawking zaměnil firewall za chaos wall, ve skutečnosti ale může jít o stejnou věc".
Existují tedy černé díry?
Jak to tedy s černými děrami je? Aby byly černé, nesměly by vyzařovat žádnou radiaci (i světlo je forma radiace). Podle Hawkinga by ale tyto objekty zářit měly, tedy nejde podle definice o černé díry. To ale nic nemění na tom, že tyto objekty existují, v jádru Mléčné dráhy je ukryté supermasivní monstrum, nazývané astronomy Sagittarius A*, které nikdo nevidí. Zatím. Existuje totiž program nazvaný Event Horizon Telescope, jehož cílem je propojení nejvýkonnějších teleskopů na Zemi do jednoho obřího interferometru, který bude schopný poprvé zaostřit právě na Sagittarius A* a pozorovat horizont, ve kterém se informace dostává za hranici za níž není úniku.
Líbí se Vám tento článek?

Podpořte tento web sdílením našeho obsahu.

Chcete vědět o dalším článku?

Následujte nás na sociálních sítích.

Další zprávy z kategorie Černé díry

Kanadský radioteleskop zachytil rádiový signál z hloubi vesmíru s doposud nejnižší frekvencí

05. 08. 2018 (novější než zobrazený článek)

Kanadský teleskop CHIME (Canadian Hydrogen Intensity Mapping Experiment) zachytil 25. července rychlý rádiový signál (Fast Radio Burst, FRB) s doposud nejnižší frekvencí. Signál s označením FRB 180725A měl frekvenci 580 MHz, což je o téměř 200 MHz méně než kterýkoliv jiný dosud zachycený a srovnatelný signál z vesmíru. Zdroj tohoto signálu zatím není známý, mohlo by jít o výsledek velmi energetických událostí spojených s extrémními objekty jako jsou supermasivní černé díry nebo neutronové hvězdy.

celý článek

Nový teleskop MeerKAT zachytil v dosud největším detailu jádro Mléčné dráhy

16. 07. 2018 (novější než zobrazený článek)

Nový teleskop MeerKAT zachytil v dosud největším detailu jádro Mléčné dráhyV Jihoafrické republice byl oficiálně uveden do provozu radiový teleskop MeerKAT, který se skládá z celkem 64 samostatných antén. Jde o největší a nejcitlivější zařízení svého druhu na Zemi, dokud jej nepředčí další jihoafrický teleskop SKA (Square Kilometre Array) v roce 2024. Při slavnostním uvedení do provozu byl zveřejněn snímek středu naší galaxie odhalující doposud nevídaný detail okolí supermasivní černé díry Sagittaruis A*.

celý článek

Observatoř na Antarktidě potvrzuje, že černé díry jsou zdrojem vysokoenergetických neutrin

13. 07. 2018 (novější než zobrazený článek)

Observatoř na Antarktidě potvrzuje, že černé díry jsou zdrojem vysokoenergetických neutrinS pomocí detektoru neutrin na jižním pólu IceCube se vědcům podařilo poprvé detekovat zdroj vysokoenergetických neutrin, je jím vzdálená supermasivní černá díra TXS 0506+056. Neutrina jsou subatomární částice, které jen zřídka interagují se hmotou a není tak jednoduché je zachytit. Neutrina vznikají například ve hvězdách, supernovách nebo při jaderných reakcích. Zdroj vysokoenergetických neutrin však byl doposud neznámý, nebo alespoň nebyl potvrzený. Podle nové studie mohou vznikat právě v černých dírách v jádru masivních galaxií.

celý článek

Astronomové našli nejzářivější kvasar v rádiových vlnách v raném vesmíru

10. 07. 2018 (novější než zobrazený článek)

Eduardo Bañados z Carnegie Institution for Science našel spolu se svým týmem kvazar, který má nejintenzivnější pozorované rádiové vlny a existoval už v brzké fázi vývoje vesmíru. Jde o supermasivní černou díru, která chrlí do svého okolí proud plazmy, který lze detekovat v rádiových emisích. Podle studie publikované v magazínu The Astrophysical Journal k nám signál z tohoto objektu letěl dlouhých 13 miliard let.

celý článek

Kolize neutronových hvězd dala vzniknout proudu radiace se zřetelnou strukturou

05. 07. 2018 (novější než zobrazený článek)

Kolize neutronových hvězd dala vzniknout proudu radiace se zřetelnou strukturouAstronomové v loňském roce poprvé detekovali kolizi neutronových hvězd, pomohla jim k tomu detekce gravitačních vln GW170817. Krátce po detekci této události zachytili také záblesk gama záření a následně také rentgenové, ultrafialové i viditelné světlo. Podle nové studie vědců z Warwick University to odpovídá relativistickému proudu hmoty, který chrlí výsledný objekt ze svých pólů směrem do blízkosti sluneční soustavy.

celý článek

U malých masivních galaxií černé díry spolkly většinu hmoty určenou pro hvězdy

02. 07. 2018 (novější než zobrazený článek)

U malých masivních galaxií černé díry spolkly většinu hmoty určenou pro hvězdyPřed asi deseti lety objevili astronomové nový druh galaxií, byly menší než ostatní ale zároveň obsahovaly poměrově více hmoty. Podle nové studie za to mohou jejich centrální supermasivní černé díry, které zkonzumovaly část hmoty, která by jinak šla do formování hvězd. Přišli na to studiem dvou blízkých galaxií Mrk 1216 a PGC 032673, výsledky jejich výzkumu jsou publikovány v magazínu Monthly Notices of the Royal Astronomical Society.

celý článek

Když hvězdu pohltí černá díra: první pozorování proudu materiálu vycházejícího z černé díry

15. 06. 2018 (novější než zobrazený článek)

Když hvězdu pohltí černá díra: první pozorování proudu materiálu vycházejícího z černé díryPoprvé v historii se astronomům podařilo přímo zachytit formování a následnou expanzi proudu materiálu vycházejícího z černé díry (v angličtině astrophysical jet, nebo relativistic jet). K této události dochází, když se hvězda k černé díře příliš přiblíží a nedokáže uniknout její intenzivní gravitaci. Materiál z hvězdy vytvoří rychle rotující disk nad rovníkem černé díry a z jejích pólů vychází proud ionizovaného materiálu. Událost astronomové pozorovali prostřednictvím radioteleskopů a infračervených teleskopů v páru kolizních galaxií ARP 299 ve vzdálenosti 150 milionů světelných let.

celý článek