Podle nové Hawkingovy studie černé díry neexistují, alespoň ne tak, jak je známe

26. 01. 2014
Černé díry Teoretická fyzika Sagittarius A*

Britský teoretický fyzik Stephen Hawking znovu rozvířil vlny světa černých děr se svou novou studií, kterou publikoval ve středu 22. ledna. Hawking věnoval podstatnou část svého života studiu objektů s tak velkou gravitací, že jim neunikne ani světlo. Jeho poslední práce ale jejich existenci de facto popírá. Jak tomu tedy ve skutečnosti je? A co vlastně dřímá v centru naší galaxie, kde, jak astronomové tvrdí, leží obří nepředstavitelné monstrum, kterému říkají supermasivní černá díra?

Sagittaruis A*

Sagittaruis A* - Záblesk rentgenové radiace, který zachytil vesmírný teleskop NuSTAR. Bílá oblast ve středu snímku je extrémně horká hmota rotující nejblíž černé díře. V okolí jsou potom zbytky jiných hvězd, jejich planet a oblaků plynů. Po pravé straně je časový průběh rentgenového záblesku jak jej pozoroval teleskop NuSTAR.



Co vlastně černé díry jsou?
Hvězdy dosahují různých velikostí. V těch nejmenších sotva probíhá termojaderná reakce a tak téměř nesvítí. Ve větších hvězdách, které jsou svou masou podobné slunci, dochází ke slučování atomů vodíku a vzniku helia, při této reakci dochází k uvolňování velkého množství energie, které se projevuje tím, že hvězda svítí. Existují i větší hvězdy, s ještě větší gravitací než má naše slunce, existují tak velké hvězdy, jejichž obří gravitace jim umožňuje slučovat atomy helia do ještě těžších prvků. No a potom existují superobří objekty s tak nepředstavitelnou gravitační silou, že jejich spárům nedokážou uniknout ani nehmotné fotony. Tyto "hvězdy" známe jako černé díry, kterým neunikne nic, ani světlo, a astronomové už našli množství objektů, jejichž okolí se chová tak, jako by se nacházely v blízkosti černé díry.
Svět teoretických paradoxů
Černota černých děr je tedy dána faktem, že jejich gravitaci nemá uniknout nic. Tedy nejen světlo, ale také žádná informace, což byl vždy problém pro kvantové fyziky, informace o hmotě - tedy i ta, která spadne do černé díry - by totiž měla být zachována. Kolem černých děr tak vzniklo několik paradoxů, které se fyzikové snaží alespoň teoreticky vysvětlit, přímá pozorování totiž, už ze samotné definice černých děr, nejsou možná. Většina teoretických fyziků se nakonec shodla na tom, že na vnějším povrchu horizontu události vzniká (hawkingova) radiace, která vyzařuje do okolního vesmíru. Tato radiace vzniká z kvantového principu a má mít za důsledek postupné zmenšování černé díry až její úplné vypaření. Ke ztrátě informace tedy nedochází, protože je v podobě radiace vyzařována do okolí černé díry. V roce 2012 se však objevil nový paradox, paradox ohnivé zdi (firewall paradox), se kterým přišla skupina vědců z University of California in Santa Barbara vedená Josephem Polchinskim. Podle tohoto paradoxu, pokud hawkingova radiace skutečně obklopuje horizont události, musí sežehnout všechno, co se k horizontu přiblíží. To je ale opět v rozporu s přístupem obecné relativity, která předpokládá nedramatický průběh při průchodu horizontem události. Tedy ve zkratce: opět nesoulad mezi přístupem kvantové fyziky a obecné relativity.
Poslední teorie
Tuto situaci se teď Hawking pokouší vyřešit opuštěním zavedeného konceptu horizontu události a nahrazuje jej zdánlivým horizontem (apparent horizon). Jde o podobný typ hranice, která vyznačuje prostor kolem masivního objektu, ze kterého není kvůli velké gravitaci úniku s jedním důležitým rozdílem: zdánlivý horizont mění svůj tvar. V takovémto okolí černé díry může informace, která překročila hranici zdánlivého horizontu, ještě pořád uniknout, protože se může ocitnout mimo zdánlivý horizont v případě, že dojde ke změně jeho tvaru v důsledku kvantových fluktuací uvnitř. Nová hawkingova teorie má ale jeden háček, prostor za zdánlivým horizontem události informaci změní a ta se stává chaotickou natolik, že ji prakticky není možné zpětně dekódovat. Nedochází tak ke ztrátě informace jako takové, nicméně její interpretace je v podstatě nemožná. Na to reagoval Polchinski větou "Skoro to zní, jako by Hawking zaměnil firewall za chaos wall, ve skutečnosti ale může jít o stejnou věc".
Existují tedy černé díry?
Jak to tedy s černými děrami je? Aby byly černé, nesměly by vyzařovat žádnou radiaci (i světlo je forma radiace). Podle Hawkinga by ale tyto objekty zářit měly, tedy nejde podle definice o černé díry. To ale nic nemění na tom, že tyto objekty existují, v jádru Mléčné dráhy je ukryté supermasivní monstrum, nazývané astronomy Sagittarius A*, které nikdo nevidí. Zatím. Existuje totiž program nazvaný Event Horizon Telescope, jehož cílem je propojení nejvýkonnějších teleskopů na Zemi do jednoho obřího interferometru, který bude schopný poprvé zaostřit právě na Sagittarius A* a pozorovat horizont, ve kterém se informace dostává za hranici za níž není úniku.
Líbí se Vám tento článek?

Podpořte tento web sdílením našeho obsahu.

Chcete vědět o dalším článku?

Následujte LIVINGfUTURE na sociálních sítích.


Další zprávy z kategorie Černé díry

Obří černá díra rotuje 50 procenty rychlosti světla

15. 01. 2019 (novější než zobrazený článek)

Obří černá díra rotuje 50 procenty rychlosti světlaPozorováním zbytku hmoty, kterou pohltila supermasivní černá díra ASASSN-14li, se vědcům podařilo změřit rychlost její rotace. Tento masivní objekt se točí polovinou rychlosti světla. Výzkum ukazuje jak extrémní objekty supermasivní černé díry jsou, nachází se v jádrech galaxií a mají nesmírnou gravitační sílu. Objekty, které se dostanou do jejich blízkosti, jsou nejprve gravitací roztrhány na oblaka hmoty, které kolem černé díry rotují neuvěřitelnou rychlostí, přičemž jsou zahřívány na vysoké teploty.

celý článek

První detekce akrečního disku v jádru galaxie v rentgenovém i milimetrovém záření

14. 01. 2019 (novější než zobrazený článek)

První detekce akrečního disku v jádru galaxie v rentgenovém i milimetrovém zářeníAstronomové identifikovali torus obklopující supermasivní černou díru v jádru galaxie NGC 5643. Jde o strukturu, která se vytváří v bezprostřední blízkosti masivní černé díry a ze které se v její středu utváří akreční disk materiálu, který černá díra urychluje a zahřívá na extrémní rychlosti a teploty. Vědci k analýze tohoto objektu využili dat z milimetrové radiové observatoře ALMA v Čile a rentgenového vesmírného teleskopu Chandra.

celý článek

Výjimečně zářivý záblesk z loňského roku mohl být způsoben roztrháním hvězdy, nebo vznikem černé díry

11. 01. 2019 (novější než zobrazený článek)

Výjimečně zářivý záblesk z loňského roku mohl být způsoben roztrháním hvězdy, nebo vznikem černé díryLoni v červenci zaznamenaly vesmírné i pozemní observatoře unikátní událost, šlo o záblesk asi 10x silnější než běžná supernova. Vědci však doteď přesně neví, co tuto událost mohlo způsobit, nic podobného totiž doteď nezpozorovali. Existují dvě hlavní teorie vysvětlující. co záblesk způsobilo, ke každé z noci byla publikována vědecká studie. Podle první teorie mohlo jít o vznik četné díry, nebo neutronové hvězdy za specifických podmínek, podle druhé teorie mohlo dojít k roztrhání hvězdy černou dírou.

celý článek

Astronomové zachytili intenzivní erupci gama záření ze vzdáleného blazaru

06. 01. 2019 (novější než zobrazený článek)

Mezinárodní tým astronomů zachytil pomocí vesmírného teleskopu Fermi extrémně zářivou erupci gama záření z blazaru DA 193. Jde o výjimečnou událost, protože tento vzdálený objekt má vysoký červený posuv a u takových nejsou podobné události běžné. Blazary jsou obecně nejpočetnějším zdrojem gama záření mimo naši galaxii, to však neplatí pro takto energetickou událost, jaká byla detekována, ani pro objety s tak výrazným červeným posuvem.

celý článek

V datech z detektorů gravitačních vln se ukrývaly hned čtyři další kolize černých děr, mezi nimi i ta největší

04. 12. 2018 (novější než zobrazený článek)

V datech z detektorů gravitačních vln se ukrývaly hned čtyři další kolize černých děr, mezi nimi i ta největšíMezinárodnímu týmu astronomů se podařilo v datech z loňského roku nalézt čtveřici nových detekcí gravitačních vln. První zaznamenání tohoto fenoménu je teprve z roku 2015 a doposud bylo zachyceno pouze 11 takových událostí. Mezi čtyřmi novými kolizemi je také doposud největší zachycená kolize černých děr, která dala vzniknout objektu o hmotnosti 80 sluncí. Oba nejvýkonnější detektory gravitačních vln jsou aktuálně upgradovány na vyšší citlivost, do provozu budou uvedeny opět začátkem roku 2019.

celý článek

Astronomové zachytili kolidující supermasivní černé díry v jádrech galaxií

12. 11. 2018 (novější než zobrazený článek)

Astronomové zachytili kolidující supermasivní černé díry v jádrech galaxiíTým astronomů vedený Michaelem Kossem z University of Maryland pozoroval několik galaxií, které jsou v procesu spojování dvou do jedné. Zaměřili se na jejich jádra, kde se ukrývají supermasivní černé díry, které se podobně jako jejich mateřské galaxie dříve nebo později sloučí v jedinou. Vysledkem pozorování teleskopy W.M. Keck a Hubble je hned několik párů supermasivních černých děr, které jsou velmi blízko splynutí. Výsledky výzkumu byly publikovány v magazínu Nature.

celý článek

Nejdetailnější pozorování materiálu obíhajícího příliš blízko horizontu události černé díry

01. 11. 2018 (novější než zobrazený článek)

Nejdetailnější pozorování materiálu obíhajícího příliš blízko horizontu události černé díryVědcům se díky vysoce citlivému instrumentu GRAVITY na teleskopu VLT podařilo získat další informace o supermasivní černé díře ve středu Mléčné dráhy. Nová pozorování ukazují shluky plynů urychlené až na 30 % rychlosti světla jen kousek před horizontem události této černé díry. Jde o první pozorování materiálu takto blízko černé díře a další z mnoha nepřímých potvrzení existence extrémního objektu v jádru naší domácí galaxie.

celý článek