Podle nové Hawkingovy studie černé díry neexistují, alespoň ne tak, jak je známe

26. 1. 2014
Černé díry Teoretická fyzika Sagittarius A*

Britský teoretický fyzik Stephen Hawking znovu rozvířil vlny světa černých děr se svou novou studií, kterou publikoval ve středu 22. ledna. Hawking věnoval podstatnou část svého života studiu objektů s tak velkou gravitací, že jim neunikne ani světlo. Jeho poslední práce ale jejich existenci de facto popírá. Jak tomu tedy ve skutečnosti je? A co vlastně dřímá v centru naší galaxie, kde, jak astronomové tvrdí, leží obří nepředstavitelné monstrum, kterému říkají supermasivní černá díra?

Sagittaruis A*

Sagittaruis A* Záblesk rentgenové radiace, který zachytil vesmírný teleskop NuSTAR. Bílá oblast ve středu snímku je extrémně horká hmota rotující nejblíž černé díře. V okolí jsou potom zbytky jiných hvězd, jejich planet a oblaků plynů. Po pravé straně je časový průběh rentgenového záblesku jak jej pozoroval teleskop NuSTAR.



Co vlastně černé díry jsou?
Hvězdy dosahují různých velikostí. V těch nejmenších sotva probíhá termojaderná reakce a tak téměř nesvítí. Ve větších hvězdách, které jsou svou masou podobné slunci, dochází ke slučování atomů vodíku a vzniku helia, při této reakci dochází k uvolňování velkého množství energie, které se projevuje tím, že hvězda svítí. Existují i větší hvězdy, s ještě větší gravitací než má naše slunce, existují tak velké hvězdy, jejichž obří gravitace jim umožňuje slučovat atomy helia do ještě těžších prvků. No a potom existují superobří objekty s tak nepředstavitelnou gravitační silou, že jejich spárům nedokážou uniknout ani nehmotné fotony. Tyto "hvězdy" známe jako černé díry, kterým neunikne nic, ani světlo, a astronomové už našli množství objektů, jejichž okolí se chová tak, jako by se nacházely v blízkosti černé díry.
Svět teoretických paradoxů
Černota černých děr je tedy dána faktem, že jejich gravitaci nemá uniknout nic. Tedy nejen světlo, ale také žádná informace, což byl vždy problém pro kvantové fyziky, informace o hmotě - tedy i ta, která spadne do černé díry - by totiž měla být zachována. Kolem černých děr tak vzniklo několik paradoxů, které se fyzikové snaží alespoň teoreticky vysvětlit, přímá pozorování totiž, už ze samotné definice černých děr, nejsou možná. Většina teoretických fyziků se nakonec shodla na tom, že na vnějším povrchu horizontu události vzniká (hawkingova) radiace, která vyzařuje do okolního vesmíru. Tato radiace vzniká z kvantového principu a má mít za důsledek postupné zmenšování černé díry až její úplné vypaření. Ke ztrátě informace tedy nedochází, protože je v podobě radiace vyzařována do okolí černé díry. V roce 2012 se však objevil nový paradox, paradox ohnivé zdi (firewall paradox), se kterým přišla skupina vědců z University of California in Santa Barbara vedená Josephem Polchinskim. Podle tohoto paradoxu, pokud hawkingova radiace skutečně obklopuje horizont události, musí sežehnout všechno, co se k horizontu přiblíží. To je ale opět v rozporu s přístupem obecné relativity, která předpokládá nedramatický průběh při průchodu horizontem události. Tedy ve zkratce: opět nesoulad mezi přístupem kvantové fyziky a obecné relativity.
Poslední teorie
Tuto situaci se teď Hawking pokouší vyřešit opuštěním zavedeného konceptu horizontu události a nahrazuje jej zdánlivým horizontem (apparent horizon). Jde o podobný typ hranice, která vyznačuje prostor kolem masivního objektu, ze kterého není kvůli velké gravitaci úniku s jedním důležitým rozdílem: zdánlivý horizont mění svůj tvar. V takovémto okolí černé díry může informace, která překročila hranici zdánlivého horizontu, ještě pořád uniknout, protože se může ocitnout mimo zdánlivý horizont v případě, že dojde ke změně jeho tvaru v důsledku kvantových fluktuací uvnitř. Nová hawkingova teorie má ale jeden háček, prostor za zdánlivým horizontem události informaci změní a ta se stává chaotickou natolik, že ji prakticky není možné zpětně dekódovat. Nedochází tak ke ztrátě informace jako takové, nicméně její interpretace je v podstatě nemožná. Na to reagoval Polchinski větou "Skoro to zní, jako by Hawking zaměnil firewall za chaos wall, ve skutečnosti ale může jít o stejnou věc".
Existují tedy černé díry?
Jak to tedy s černými děrami je? Aby byly černé, nesměly by vyzařovat žádnou radiaci (i světlo je forma radiace). Podle Hawkinga by ale tyto objekty zářit měly, tedy nejde podle definice o černé díry. To ale nic nemění na tom, že tyto objekty existují, v jádru Mléčné dráhy je ukryté supermasivní monstrum, nazývané astronomy Sagittarius A*, které nikdo nevidí. Zatím. Existuje totiž program nazvaný Event Horizon Telescope, jehož cílem je propojení nejvýkonnějších teleskopů na Zemi do jednoho obřího interferometru, který bude schopný poprvé zaostřit právě na Sagittarius A* a pozorovat horizont, ve kterém se informace dostává za hranici za níž není úniku.
Líbil se Vám tento článek?

Podpořte tento web sdílením našeho obsahu:

Chcete vědět o dalším článku?

Následujte LIVINGfUTURE na sociálních sítích.


Další zprávy z kategorie Černé díry

Teleskop VLT objevil v blízké galaxii hned tři supermasivní černé díry, jde o první takovou galaxii

3. 12. 2019 (novější než zobrazený článek)

Teleskop VLT objevil v blízké galaxii hned tři supermasivní černé díry, jde o první takovou galaxiiGalaxie NGC 6240 se už na první pohled liší od ostatních. Místo relativně pravidelné spirály, jakou má Mléčná dráha, má NGC 6240 dvě zřejmá jádra zahalená množstvím prachu a slepá ramena sahající daleko od centra různými směry. Astronomové doposud předpokládali, že pozorují následek nedávného sloučení dvou masivních galaxií, kvůli prachu však nemohli proniknout do jádra galaxie. Nová pozorování teleskopem VLT nyní v jádru odhalila hned tři supermasivní černé díry, což by znamenalo, že NGC 6240 vznikla ze tří původních galaxií.

celý článek

Černá díra o hmotnosti 70 Sluncí překvapila vědce, neví jak mohla vzniknout

29. 11. 2019 (novější než zobrazený článek)

Černá díra o hmotnosti 70 Sluncí překvapila vědce, neví jak mohla vzniknoutTým astronomů vedený profesorem Liu Jifengem z National Astronomical Observatory of China (NAOC) objevil v Mléčné dráze ve vzdálenosti 16 tisíc světelných let černou díru o hmotnosti zhruba 68 Sluncí (přesněji 55-79). Vědci však nepředpokládali, že by černé díry hvězdné velikosti s podobnou váhou mohly v naší galaxii existovat.

celý článek

Astronomové objevili zatím nejlehčí černou díru, je jen třikrát hmotnější než Slunce

1. 11. 2019 (novější než zobrazený článek)

Astronomové objevili zatím nejlehčí černou díru, je jen třikrát hmotnější než SlunceExistuje několik druhů černých děr, patří mezi ně supermasivní černé díry v jádrech galaxií s miliardami hmotností Slunce, ale také drobné stelární černé díry o hmotnosti několika málo Sluncí. Vědcům se nyní podařilo objevit zatím nejméně masivní černou díru o hmotnosti pouhých 3,3 Sluncí (přesněji 2,6-6,1). Jde tak o další přírůstek do malé skupiny malých objektů, které není snadné spatřit.

celý článek

Neutrino s vysokou energií by mohlo pocházet z binární supermasivní černé díry

10. 10. 2019 (novější než zobrazený článek)

V roce 2017 se vědcům podařilo poprvé identifikovat zdroj vysokoenergetických neutrin z hlubokého vesmíru. Přišlo k nám z 3,8 miliard světelných let vzdáleného blazaru TXS 0506+056, ten však dodnes zůstává jediným zdrojem tohoto druhu neutrin a vědci zřejmě přišli na to proč: v jádru této galaxie se totiž zřejmě nachází vzácná binární supermasivní černá díra.

celý článek

Teleskop, který letos poprvé vyfotil černou díru, se chystá na první video černé díry

6. 10. 2019 (novější než zobrazený článek)

Teleskop, který letos poprvé vyfotil černou díru, se chystá na první video černé díryOranžovo-černý snímek černé díry letos na jaře obletěl celou planetu a nadchnul nespočet lidí. K jeho pořízení bylo potřeba propojit výkonné teleskopy po celém světě do jednoho zařízení nazvaného Event Horizon Telescope. Pro další krok, pořízení pohyblivého videa, to však nestačí - vědci potřebují ještě větší počet propojených teleskopů. A právě na to získali nové finance od americké National Science Foundation (NSF).

celý článek

Vědci pozorovali zatím nejranější chvíle zničení hvězdy černou dírou

27. 9. 2019 (novější než zobrazený článek)

Vědci pozorovali zatím nejranější chvíle zničení hvězdy černou dírouVědcům se podařilo získat data z události, kdy černá díra roztrhala svou gravitací hvězdu. Díky flotile teleskopů, které akci pozorovaly, získali vědci zatím nejdetailnější informace ze začátku této události. Výrazně tomu pomohl také vesmírný teleskop TESS, který má sice za úkol hledat exoplanety, ale díky způsobu, jakým je hledá, má mnohem širší využití.

celý článek

Supermasivní černá díra s nezvykle pravidelným cyklem rentgenových záblesků

15. 9. 2019 (novější než zobrazený článek)

Supermasivní černá díra s nezvykle pravidelným cyklem rentgenových zábleskůAstronomové našli supermasivní černou díru, která pravidelně každých devět hodin vydává rentgenový záblesk. To je nezvyklé chování, které bylo dříve detekováno pouze u dvou malých stelárních černých děr, nikoli u supermasivních v jádru galaxií. Rentgenové záření vychází z okolí černých děr při pohlcování materiálu zachyceného jejich gravitací, zatím však není zřejmé, proč jde u této černé díry o pravidelný jev.

celý článek