Fúze kvarků generuje dosud nepředstavitelné množství energie, více než jaderná fúze

07. 11. 2017
Fyzika Částicová fyzika LHC

Dvěma vědcům na univerzitách v Tel Avivu a Chicagu se podařilo teoreticky prokázat masivní množství energie uvolňované při interakci subatomárních částic známých jako kvarky. Při tomto subatomárním ekvivalentu jaderné fúze dochází k uvolnění až osmkrát většího množství energie než u vodíkové bomby. Tento objev přináší nové světlo do interakcí subatomárních částic a jejich potenciálního využití. Výsledky práce Marka Karlinera a Jonathana Rosnera byly publikovány ve vědeckém magazínu Nature.

Higgsův boson

Higgsův boson - Simulovaný model výstupu CMS detektoru LHC. Na obrázku je simulovaná kolize protonů, která vyústila ve vznik higgsova bosonu, který se následně rozpadl na dva hadrony a dva elektrony.



Kvarky jsou ve standardním modelu fyziky základními stavebními částicemi, ze kterých vznikají baryony jako jsou například protony, nejdou tedy dělit na menší částice. existuje však několik druhů a lze je vzájemně kombinovat při čemž vznikají různé jiné subatomární částice. Kalkulacemi se Karliner a Rosner dobrali k závěru, že sloučením dvou spodních kvarků (bottom quarks) vzniká masivní množství energie.

Energie uvolňovaná při takových reakcích se měří v megaelektronvoltech (MeV). Ve vodíkové bombě, nejsilnější sestrojené zbrani, kde dochází ke slučování dvou forem jader vodíku - deuteria a tritia, dochází k uvolnění 18 MeV při vzniku atomu helia. Při fúzi dvou spodních kvarků dochází k uvolnění 138 MeV energie.

Nejprve se vědci ostýchali výsledky své práce publikovat, obávali se zneužití pro vojenské účely, podobně jako tomu bylo u atomové bomby. Fúze kvarků totiž nápadně připomíná reakci, která probíhá ve vodíkové bombě, kde dochází ke slučování jader vodíku za uvolňování velkého množství energie. Na rozdíl od vodíku ale kvarky existují po tak krátkou dobu (pouhou pikosekundu), že je řetězová reakce v podstatě vyloučena a tak se aplikace kvarkové fúze do bomby dá jen těžko realizovat.

Aktuálně nebylo kvarkové fúze ještě dosaženo, zatím jde o pouhé teoretické kalkulace. Podle vědců by ale mělo být možné tyto podmínky replikovat v urychlovači částic LHC, kde jsou rozbíjeny protony na menší částice a kvarky tam vznikají. Ani v LHC ale nebude možné sloučit tolik kvarků, aby byla "exploze" ničivě silná.
Autor článku: redakce
2
Zajímá vás toto téma?

Dejte nám vědět a klikněte na toto tlačítko.
Tématům, o která bude největší zájem,
se pokusíme věnovat více prostoru.

Líbil se Vám článek?

Více informací k tématu
Chcete vědět o dalším článku?

Další zprávy z kategorie Částicová fyzika

Vědci vytvořili zcela novou formu světla, má tři fotony v jedné částici

19. 02. 2018 (novější než zobrazený článek)

Vědci vytvořili zcela novou formu světla, má tři fotony v jedné částiciVědcům se v experimentu podařilo prokázat novou formu světla, kdy se jednotlivé fotony vážou do trojic. Vytvořené trojfotony tvoří základ doposud neprobádané fotonické hmoty, která zatím nebyla pozorována ani v přírodě, ani v experimentech. Tento úspěch by mohl vést k použití fotonů v kvantových výpočtech, nebo dalším, doteď netušeným, možnostem. Výsledky týmu vědců z MIT, Harvard University a dalších institucí vedeném Vladanem Vuletićem a Mikhailem Lukinem byly publikovány v únorovém čísle magazínu Science.

celý článek

Experimenty s intenzivními lasery poskytují první důkazy, že pomocí světla lze zastavit elektrony

12. 02. 2018 (novější než zobrazený článek)

Ozařováním elektronů ultra-intenzivním laserem se vědcům podařilo překročit hranice běžné fyziky a přiblížit se kvantovým efektům. Když světlo dopadá na nějaký objekt, část záření se od něj odráží, pokud se však objekt pohybuje velmi rychle a světlo je velmi intenzivní, začnou se dít podivné věci. Například elektrony se mohou natolik rozvibrovat, že zpomalí, protože vibrace spotřebují velké množství energie. Podobný efekt vědci předpokládají také například u černých děr. Týmu na Imperial College London se podařilo provést tuto reakci poprvé v laboratorních podmínkách, výsledky jejich práce byly publikovány v magazínu Physical Review X.

celý článek

Tři typy vysokoenergetických částic z vesmíru mají stejný původ - v aktivních jádrech galaxií

24. 01. 2018 (novější než zobrazený článek)

Tři typy vysokoenergetických částic z vesmíru mají stejný původ - v aktivních jádrech galaxiíVědcům z Pennsylvania State University a University of Maryland se podařilo vysvětlit původ hned tří typů subatomárních částic, které k nám přicházejí z vesmíru. Jde o vysokoenergetická neutrina, extrémně energetické kosmické záření a vysokoenergetické gama záření. Všechny tři pravděpodobně pocházejí ze supermasivních černých děr, konkrétně z proudů radiace, které vycházejí z jejich pólů. Výsledky výzkumu byly v lednu publikovány v magazínu Nature Physics.

celý článek

Vědcům se podařilo prokázat nové skupenství hmoty - excitonium

10. 12. 2017 (novější než zobrazený článek)

Vědcům se podařilo prokázat nové skupenství hmoty - excitoniumSkupenství hmoty excitonium bylo teoreticky předpovězeno už v 70. letech a jeho existence byla pozorována nepřímými důkazy, jde o tzv. Bose-Einsteinův kondenzát tvořený excitony. Týmu vědců pod vedením profesora Petera Abbamonteho se nyní podařilo přijít s novými důkazy, které existenci excitonia jasně prokazují. Pomohla jim k tomu nová technika nazývaná M-EELS (Momentum-resolved Electron Energy-Loss Spectroscopy), kterou si sami vyvinuli pro měření nízkoenergetických bosonů. Výsledky výzkumu byly publikovány ve vědeckém magazínu Science v prosinci.

celý článek

Měření observatoře na jižním pólu ukazují, že Země absorbuje energetická neutrina

26. 11. 2017 (novější než zobrazený článek)

Podle studie publikované v listopadovém vydání magazínu Nature jsou neutrina na své cestě absorbovaná v naší planetě. Aturoři studie tak usuzují z měření částicového detektoru IceCube umístěného nedaleko jižního pólu. Neutrina jsou subatomární částice, které procházejí v obrovských množstvích veškerou hmotou, u těch vysoce energetických však dochází k interakcím s protony a neutrony. Pozorované chování neutrin odpovídá předpovědím standardního modelu částicové fyziky.

celý článek

Čína představila světu své plány na výstavbu gigantického urychlovače částic CEPC

24. 09. 2014

Doposud největší urychlovač částic leží pod Alpami, jmenuje se Large Hadron Collider (LHC) a operuje jej Evropská organizace pro jaderný výzkum (CERN). LHC sestává z 27 kilometrů dlouhého okruhu, ve kterém dochází k urychlování a následným srážkám subatomárních částic, nový čínský urychlovač CEPC bude mít v obvodu skoro až neuvěřitelných 80 kilometrů. Na projektu budou s čínskými vědci spolupracovat také evropští a američtí fyzikové, které mají s velkými urychlovači už spoustu zkušeností.

celý článek

Další experimenty v urychlovači LHC potvrzují loňský objev higgsova bossonu

14. 03. 2013

Další experimenty v urychlovači LHC potvrzují loňský objev higgsova bossonuVědci z evropské organizace pro jaderný výzkum (CERN) dnes představili nové výsledky jejich experimentů na velkém hadronovém urychlovači částic (LHC). Experimenty s protony urychlenými až k rychlosti světla potvrzují závěry z loňského roku, podle kterých se vědcům podařilo najít higgsův boson - částici, která má být zodpovědná za hmotnost veškeré hmoty ve vesmíru.

celý článek