Výzkumníkům v CERNu se podařilo dosáhnout prvního urychlení elektronů v plazmové vlně

03. 09. 2018
Částicová fyzika LHC CERN

Kolaboraci vědců AWAKE se podařilo poprvé urychlit elektrony s pomocí vlnového pole generovaného protony procházejícími plazmatem. Jde o první výsledky zcela nového přístupu k urychlování částic ve vědeckých experimentech. Tento přístup by mohl v budoucnu nahradit dosavadní postupy aplikované v dnešních nejsilnějších urychlovačích. Výsledky experimentu byly publikovány v srpnovém čísle magazínu Nature.



AWAKE (Advanced WAKEfield Experiment) je projekt, který má prokázat použitelnost nového postupu v urychlování elektronů na vysoké rychlosti (a energie). Byl schválen laboratoří CERN v roce 2013, vychází však z konceptu, se kterým vědci přišli už v roce 1979.

Dnešní urychlovače částic jako je LHC používají supravodivé dutiny, které střídají pozitivně a negativně nabité zóny, které odpuzováním a přitažlivostí urychlují částice, jež dutinami prochází. Nový přístup urychluje částice tím, že se vezou na vlně podobně jako surfař. 

Experiment AWAKE využívá protony generované v SPS (Super Proton Synchrotron), který je dodává také LHC. Tyto protony jsou vyslány do oblaku rubidia, které je laserem přeměněno v plazma, což uvolňuje elektrony z atomů. Pozitivně nabité rychlé protony následně s sebou strhávají negativně nabité elektrony do vln putujících napříč plazmatem.

To, jak urychlovač skutečně zrychluje částice, je udáváno ve voltech na metr, používá se hlavně jednotka MV/m (megavolt na metr). LHC dokáže urychlit částice silou 5,5 MV/m, vzhledem k tomu, že jeho tunely jsou v kruhu a částice jsou při každém průchodu urychlovány více a více, lze s LHC dosáhnout rychlostí blízkých rychlosti světla. Některé urychlovače jsou však lineární a u takových je potřeba mít silnější urychlení, jinak by musely být stovky kilometrů dlouhé. 

AWAKE dokázal v letošním experimentu urychlit částice silou 200 MV/m a vědci by jej chtěli dostat až na 1 000 MV/m (1 GV/m). To by mohlo vést k výrazně menším a levnějším urychlovačům v budoucnosti.

Líbí se Vám tento článek?

Podpořte tento web sdílením našeho obsahu.

Chcete vědět o dalším článku?

Následujte LIVINGfUTURE na sociálních sítích.


Další zprávy z kategorie Částicová fyzika

Vědci pozorovali nový stav hmoty, který se ukrýval v supravodivém materiálu

04. 01. 2019 (novější než zobrazený článek)

Tým fyziků v Ames Laboratory a na University of Alabama Birmingham objevil překvapivě dlouhotrvající stav hmoty, který nastává v materiálech v supravodivém stavu. Dosáhli jej pomocí extrémně rychlých pulsů laseru, které způsobily kolektivní chování částic uvnitř hmoty. Nový jev nastává vedle supravodivosti a oba tyto stavy vzájemně bojují o elektrony v materiálu. Studie věnující se tomuto výzkumu byla v prosinci publikována v magazínu Physical Review Letters.

celý článek

Urychlovač LHC bude na dva roky odstaven, projde úpravami, které zvýší jeho výkon

07. 12. 2018 (novější než zobrazený článek)

Urychlovač LHC bude na dva roky odstaven, projde úpravami, které zvýší jeho výkonVelký hadronový urychlovač byl v prosinci odstaven a bude nyní dva roky procházet úpravami, které mají zvýšit jeho výkon. Jde o druhou plánovanou dlouhodobou odstávku, která přichází 3 roky po dokončení té první. S novými úpravami bude urychlovač pracovat nejen s větší energií, ale navíc bude ke srážkám subatomárních částic bude docházet častěji, což vědcům umožní sbírat větší množství informací o složení hmoty.

celý článek

Boseho-Einsteinův kondenzát byl poprvé vyrobený ve vesmíru

22. 10. 2018 (novější než zobrazený článek)

Mezinárodnímu týmu vědců se podařilo poprvé ve vesmíru vyprodukovat unikátní skupenství hmoty známé jako Boseho-Einsteinův kondenzát. Jde o zvláštní skupenství hmoty, které vzniká při ochlazení atomů plynu na teploty blízké absolutní nule a jejich následném stlačení do velmi hustého kondenzátu. Experiment s označením Matter-Wave Interferometry in Microgravity (MAIUS-1) proběhl už začátkem roku 2017, v magazínu Nature nyní vyšly jeho závěry.

celý článek

Observatoř na jižním pólu detekovala částici, kterou si vědci neumí vysvětlit

02. 10. 2018 (novější než zobrazený článek)

Observatoř na jižním pólu detekovala částici, kterou si vědci neumí vysvětlitObservatoř ANITA umístěná v balónu nad jižním pólem Země detekovala za posledních 13 let dvakrát zvláštní událost, kterou si vědci zatím nedokáží vysvětlit. Jde o subatomární částici, která proletěla atmosférou, dopadla na povrch naší planety, proletěla jejím jádrem a vydala se zpět do atmosféry a do vesmíru. Při svojí cestě Zemí vygenerovala velmi slabé pulzy rádiových vln, které zachytila observatoř více než 30 kilometrů nad povrchem Antarktidy.

celý článek

V urychlovači LHC byla potvrzena existence dvou nových částic a objeveny náznaky třetí

29. 09. 2018 (novější než zobrazený článek)

V urychlovači LHC byla potvrzena existence dvou nových částic a objeveny náznaky třetíDetektor LHCb na Velkém hadronovém urychlovači (LHC) detekoval dvě doposud neviděné částice a náznaky existence třetí. Tyto subatomární částice byly už dříve teoreticky předpovězeny v tzv. kvarkovém modelu. Jedná se o baryony - druh částic, ke kterému patří také protony, z jejichž srážek vznikly. Vědci si od podrobnějšího studia těchto částic slibují odhalení mechanismu, který drží pohromadě kvarky - jedny ze základních stavebních kamenů hmoty.

celý článek

Po šesti letech od objevu higgsova bosonu vědci pozorovali jeho teoreticky nejčastější rozpad

29. 08. 2018

Po šesti letech od objevu higgsova bosonu vědci pozorovali jeho teoreticky nejčastější rozpadVe velkém hadronovém urychlovači (LHC) se vědci věnují studiu fundamentálních částic, které tvoří běžnou hmotu kolem nás, tedy atomy, protony, kvarky a další. Jednou z takových částic je také higgsův boson, jehož existenci se v roce 2012 podařilo právě v LHC potvrdit. Jde o částici, která dává hmotě hmotnost a šlo o jednu z posledních důležitých částic hmoty předpovězených standardním modelem fyziky. Nyní se vědcům podařilo pozorovat rozpad higgsova bosonu na spodní kvarky, podle předpovědí standardního modelu by mělo jít o nejčastější výsledek jeho rozpadu. Od objevení higgsova bosonu před šesti lety však tento rozpad zatím nepozorovali.

celý článek

Nová metoda na výrobu samostatných fotonů může pomoci ve studiu kvantové fyziky

01. 08. 2018

Nová metoda na výrobu samostatných fotonů může pomoci ve studiu kvantové fyzikySamostatné fotony se hodí pro studování kvantových efektů nebo fungující kvantový počítač. Jejich příprava však nebyla nikdy snadná, proto vědci uvítali demonstraci nové metody, díky které lze emitovat proud samostatných fotonů. Oproti běžné metodě využívá ta nová polarizovaného laseru, což umožňuje snadnější výrobu většího množství samostatných fotonů. Studie popisující nový postup byla publikována v magazínu Physical Review Letters.

celý článek