V urychlovači LHC byla potvrzena existence dvou nových částic a objeveny náznaky třetí
Detektor LHCb na Velkém hadronovém urychlovači (LHC) detekoval dvě doposud neviděné částice a náznaky existence třetí. Tyto subatomární částice byly už dříve teoreticky předpovězeny v tzv. kvarkovém modelu. Jedná se o baryony - druh částic, ke kterému patří také protony, z jejichž srážek vznikly. Vědci si od podrobnějšího studia těchto částic slibují odhalení mechanismu, který drží pohromadě kvarky - jedny ze základních stavebních kamenů hmoty.

Higgsův boson Simulovaný model výstupu CMS detektoru LHC. Na obrázku je simulovaná kolize protonů, která vyústila ve vznik higgsova bosonu, který se následně rozpadl na dva hadrony a dva elektrony.
Dvě nové částice dostaly označení Σb(6097)+ a Σb(6097)- a stejně jako ostatní baryony se skládají ze tří kvarků. Čtveřice příbuzných lehčích částic byla už dříve detekována v americkém Fermilabu, detekce v LHC je však první pozorování těchto těžších baryonů.
Baryonová částice | Složení | ||
---|---|---|---|
Proton | horní kvark (up quark) |
horní kvark (up quark) |
dolní kvark (down quark) |
Σb(6097)+ | horní kvark (up quark) |
horní kvark (up quark) |
spodní kvark (bottom quark) |
Σb(6097)- | dolní kvark (down quark) |
dolní kvark (down quark) |
spodní kvark (bottom quark) |
Více informací k tématu
Další zprávy z kategorie Částicová fyzika
Vědci změřili nejkratší časový úsek v historii - průlet světla molekulou vodíku
Celých 247 zeptosekund trvalo fotonu prolétnout molekulou vodíku. Jedná se o nejkratší změřený časový úsek v historii, dřívější rekord byl 850 zeptosekund z roku 2016. Zeptosekunda je triliardtina sekundy: 0,000 000 000 000 000 000 001 s = 1 zs.
celý článekVědci našli horní limit pro rychlost zvuku, dosahuje jí v pevném vodíku
Vědcům z Queen Mary University of London, University of Cambridge a Institute for High Pressure Physics in Troitskse se podařilo identifikovat nejrychlejší možné šíření zvuku. Je to 36 km/s v pevném vodíku, který by se mohl nacházet v nitru velkých plynných planet jako je Jupiter.
celý článekKvantové propojení mezi dvěma rozdílnými objekty posouvá možnosti praktické aplikace kvantové fyziky
Týmu vědců z University of Copenhagen se podařilo vytvořit kvantové propojení mezi mechanickým oscilátorem a oblakem atomů. Tyto dva velmi rozdílné objekty byly propojeny prostřednictvím fotonů. S novou metodou se vědcům otvírají nové možnosti využití kvantového propojení nejen pro vědecké účely, ale také v praktickém využití v šifrované komunikaci a ukládání informací.
Experiment v CERNu přinesl první evidenci vzácné reakce rozpadu kaonu
Vědci ve výzkumném centru pro jadernou fyziku CERN pozorovali první významnou evidenci pro proces, který by mohl mimo jiné pomoci vysvětlit existenci temné hmoty. Výsledky svého výzkumu vědci prezentovali na pražské konferenci ICHEP 2020.
celý článekNová studie odhaluje nové elektronové skupenství hmoty
Tým vědců vedený Megan Briggemanovou publikoval v magazínu Science studii, která se zaměřuje na jednodimenzionální vodivost, při které elektrony putují vodivým materiálem ve skupině namísto samostatně. Dochází tak k tzv. balistické vodivosti, při které skupiny elektronů cestují v jednom směru bez rozptylu. V takové situaci materiál nevydává při vedení proudu žádné teplo.
celý článekVědci možná pozorovali projev páté základní síly, mohla by pomoci vysvětlit temnou hmotu
Dnes jsou známy čtyři základní přírodní síly, které stojí za veškerými interakcemi mezi částicemi a poli v přírodě. Patří mezi ně silná a slabá jaderná síla, gravitace a elektromagnetická síla. Vědci nyní pozorovali v atomu helia jev, který nedokáží přisoudit ani jedné z nich, mohlo by jít o projev páté základní interakce a jejím nositelem by mohla být temná hmota.
celý článekFyzikální experiment s ultrarychlým laserem odhalil doposud neznámé skupenství hmoty
S narůstající energií dochází v materiálech k poklesu uspořádanosti jejich vnitřní struktury. Nové pokusy s vlnou hustoty náboje (charge density wave, CDW) však ukazují, že za určitých podmínek lze dosáhnout opačného výsledku: laserové pulzy ve speciálním materiálu vytváří vysoce organizovanou strukturu.
celý článek