Urychlovač LHC bude na několik let odstaven, projde úpravami, které zvýší jeho výkon

Velký hadronový urychlovač byl v prosinci odstaven a bude nyní dva roky procházet úpravami, které mají zvýšit jeho výkon. Jde o druhou plánovanou dlouhodobou odstávku, která přichází 3 roky po dokončení té první. S novými úpravami bude urychlovač pracovat nejen s větší energií, ale navíc bude ke srážkám subatomárních částic bude docházet častěji, což vědcům umožní sbírat větší množství informací o složení hmoty.

LHC

LHC schéma konstrukce trubice velkého hadronového urychlovače (Large Hardon Colider - LHC).



První velká odstávka urychlovače (Long Shutdown 1, LS1) proběhla mezi roky 2013 a 2015 a zvýšila energie kolizí na 13 TeV - téměř dvojnásobek původní hodnoty. Aktuální odstávka LS2 (long Shutdown 2) zvýší toto číslo až na 14 TeV, další navyšování už totiž není tak snadné. Zároveň však dojde ke zvýšení počtu kolizí až na pětinásobek, to je vědci označováno jako navýšení luminosity urychlovače. Vzhledem k tomu, že se při zkoumání následků kolizí pracuje hodně se statistikou, je jejich vyšší počet velkým přínosem.
Více informací k tématu
Líbil se Vám tento článek?

Podpořte tento web sdílením našeho obsahu:

Chcete vědět o dalším článku?

Následujte LIVINGfUTURE na sociálních sítích.


Další zprávy z kategorie LHC

V urychlovači LHC pod Alpami vědci poprvé detekovali neutrina z kolizí protonů

Vědcům v CERNu se podařilo poprvé detekovat kandidáty na neutrina, subatomární částice, které běžně procházejí hmotou zcela bez interakce. Neutrina vznikají ve hvězdách v supernovách, ale také v kolizích v urychlovači částic pod Alpami. Jedná se o první detekci neutrin při kolizích protonů v urychlovači. Nový postup umožní vědcům lépe pochopit, co se při těchto kolizích ve skutečnosti děje.

Rychlé kmitání muonů v urychlovači by mohlo být projevem nové fyzikální síly

Vědcům z amerického Fermilabu a několika dalších institucí a zemí se podařilo pozorovat fenomén, který si neumí vysvětlit existující vědou. Podle našeho aktuálního vědeckého poznání existují 4 fyzikální síly, které popisují interakci mezi velkými objekty i drobnými částicemi. Patří mezi ně gravitace, elektromagnetická síla a silná a slabá jaderná síla. Chování subatomárních částic muonů v urychlovači nicméně naznačuje existenci síly páté, o které toho zatím moc nevíme.

Nově objevené subatomární částice pentakvarky mají strukturu podobnou molekulám

Vědci v roce 2015 potvrdili pozorování do té doby pouze teoretického pentakvarku v urychlovači částic LHC. Od té doby se jim podařilo nasbírat prostřednictvím přístroje LHCb instalovaného na urychlovači LHC nové informace o jeho složení. Jejich výzkum ukazuje, že pentakvark se ve skutečnosti skládá z tříkvarkového baryonu a dvoukvarkového mezonu. Jde o první známou situaci, kdy se baryony a mezony spojují do jedné částice.

CERN odhalil plány na výstavbu obřího nástupce LHC, nový urychlovač bude mít 100 km v obvodu

Zatímco stávající největší urychlovač na světě LHC prochází významným upgradem, vědci z CERNu představili jeho možného nástupce. Nově představený Future Circular Collider (FCC) bude výrazně větší, v obvodu bude mít 100 kilometrů (LHC má 27 km). FCC předčí i plánovaný čínský urychlovač částic Circular Electron Positron Collider, který má mít v obvodu 80 kilometrů.

V urychlovači LHC byla potvrzena existence dvou nových částic a objeveny náznaky třetí

Detektor LHCb na Velkém hadronovém urychlovači (LHC) detekoval dvě doposud neviděné částice a náznaky existence třetí. Tyto subatomární částice byly už dříve teoreticky předpovězeny v tzv. kvarkovém modelu. Jedná se o baryony - druh částic, ke kterému patří také protony, z jejichž srážek vznikly. Vědci si od podrobnějšího studia těchto částic slibují odhalení mechanismu, který drží pohromadě kvarky - jedny ze základních stavebních kamenů hmoty.

Výzkumníkům v CERNu se podařilo dosáhnout prvního urychlení elektronů v plazmové vlně

Kolaboraci vědců AWAKE se podařilo poprvé urychlit elektrony s pomocí vlnového pole generovaného protony procházejícími plazmatem. Jde o první výsledky zcela nového přístupu k urychlování částic ve vědeckých experimentech. Tento přístup by mohl v budoucnu nahradit dosavadní postupy aplikované v dnešních nejsilnějších urychlovačích. Výsledky experimentu byly publikovány v srpnovém čísle magazínu Nature.

Po šesti letech od objevu higgsova bosonu vědci pozorovali jeho teoreticky nejčastější rozpad

Ve velkém hadronovém urychlovači (LHC) se vědci věnují studiu fundamentálních částic, které tvoří běžnou hmotu kolem nás, tedy atomy, protony, kvarky a další. Jednou z takových částic je také higgsův boson, jehož existenci se v roce 2012 podařilo právě v LHC potvrdit. Jde o částici, která dává hmotě hmotnost a šlo o jednu z posledních důležitých částic hmoty předpovězených standardním modelem fyziky. Nyní se vědcům podařilo pozorovat rozpad higgsova bosonu na spodní kvarky, podle předpovědí standardního modelu by mělo jít o nejčastější výsledek jeho rozpadu. Od objevení higgsova bosonu před šesti lety však tento rozpad zatím nepozorovali.