Nová metoda na výrobu samostatných fotonů může pomoci ve studiu kvantové fyziky

01. 08. 2018
Kvantová fyzika Částicová fyzika

Samostatné fotony se hodí pro studování kvantových efektů nebo fungující kvantový počítač. Jejich příprava však nebyla nikdy snadná, proto vědci uvítali demonstraci nové metody, díky které lze emitovat proud samostatných fotonů. Oproti běžné metodě využívá ta nová polarizovaného laseru, což umožňuje snadnější výrobu většího množství samostatných fotonů. Studie popisující nový postup byla publikována v magazínu Physical Review Letters.

Oblak rubidia a fotony

Oblak rubidia a fotony - Ilustrace experimentu, při kterém přichází zprava fotony do oblaku atomů ultrachladného rubidia. V něm dochází k provázání fotonů a atomů, kdy vznikají částice polaritony, které se mohou spojovat do molekul. V levé části fotony opouštějí oblak a oddělují se od polaritonů, zůstávají však vázané do dvojic nebo trojic.



Fotony jsou částice světla, které se v běžném prostředí vyskytují ve velkém množství a společně tvoří paprsek světla nebo jiné formy elektromagnetického záření. Pokud se ale foton ocitne samostatný, vyvstávají na povrch jeho kvantové charakteristiky jako je spin nebo kvantové provázání. Ty lze následně využít při šifrování nebo výpočtech ve kvantových počítačích.

Dosavadní postup

Laser je namířen do dutiny, ve které se nachází jeden velký atom označovaný jako kvantová tečka. Světlo laseru se v dutině odráží od stěn dokud nenarazí do atomu, což excituje elektron, který při následném dopadu vyvolá jediný foton. Problém tohoto přístupu tkví zejména v tom, že se jakékoliv zbytkové světlo z laseru míchá s nově vytvořeným fotonem.

Nový postup

Běžný laser je v novém postupu nahrazen polarizovaným paprskem, díky tomu nedochází k mísení původních fotonů v paprsku s nově vytvořenými nepolarizovanými samostatnými fotony.
Líbí se Vám tento článek?

Podpořte tento web sdílením našeho obsahu.

Více informací k tématu
Chcete vědět o dalším článku?

Následujte nás na sociálních sítích.

Další zprávy z kategorie Kvantová fyzika

Časové krystaly existují ve čtyřech dimenzích. Vědci je poprvé objevili mezi běžnými krystaly

04. 05. 2018

Fyzikům z Yale University se podařilo vyrobit časové krystaly - specifickou formu hmoty, která se kromě prostorových dimenzí definuje také v dimenzi časové. Na rozdíl od běžných krystalů, jejichž atomární struktura se periodicky opakuje v prostoru a v čase je neměnná, se u časových krystalů opakuje také v čase. Jde o teprve druhý experiment, který pozoroval oddělené časové krystaly (Discrete Time Crystals - DTC) v pevném skupenství. Výsledky výzkumu byly publikovány ve dvojici vědeckých studií v magazínech Physical Review Letters a Physical Review B.

celý článek

Nový rekord ve vývoji kvantového počítače: 20 kvantově provázaných qubitů

21. 04. 2018

Vědcům z Vídně, Innsbrucku a Ulmu se podařilo kvantově provázat 20 kvantových bitů (qubitů). Jde o pokrok oproti dosavadním 14 qubitům, které se podařilo provázat v roce 2011 (tehdy šlo o skupinu vědců z Innsbrucku, kteří jsou nyní součástí nového týmu). Aby se mohly prakticky použitelné kvantové počítače stát realitou, musí obsahovat desítky těchto qubitů. Podle některých expertů by mohly kvantové počítače předčit ty dnes běžně používané už při 50 qubitech a teoreticky při 300 qubitech by kvantový počítač mohl provádět více paralelních výpočtů než je atomů ve vesmíru.

celý článek

Nezvyklý 3/2 spin v supravodiči by mohl přinést nové možnosti u exotických materiálů

12. 04. 2018

Vodivost materiálu je způsobena pohybem elektronů mezi atomy. Supravodivost potom zcela hladkým pohybem elektronů, které do atomů nijak nenarážejí, vzniká tak vodivost bez jakéhokoliv odporu. Většinou při supravodivosti elektrony nesou spin 1/2, výzkumníci z University of Maryland však nyní experimentují s materiálem YPtBi, ve kterém mají elektrony spin 3/2. Podobné chování se v pevných materiálech dříve nepředpokládalo a mohlo by přinést zatím netušené možnosti v oblasti supravodivosti.

celý článek

Vědci vytvořili novou kvantovou částici s vlastnostmi kulového blesku

05. 03. 2018

Vědci na Amherst College (USA) a Aalto University (FIN) vytvořili poprvé třídimenzionální skyrmion v Boseho-Einsteinově kondenzátu. Skyrmion je částice, která byla teoreticky předpovězena před 40 lety, ale až nyní se ji podařilo prokázat empiricky. Tato částice má určité vlastnosti podobné kulovému blesku a vědci chtějí s pomocí tohoto výzkumu nejen poznat lépe tento fenomén, ale také zjistit, zda by nešel využít například ve fúzních reaktorech.

celý článek

Vědci vytvořili zcela novou formu světla, má tři fotony v jedné částici

19. 02. 2018

Vědci vytvořili zcela novou formu světla, má tři fotony v jedné částiciVědcům se v experimentu podařilo prokázat novou formu světla, kdy se jednotlivé fotony vážou do trojic. Vytvořené trojfotony tvoří základ doposud neprobádané fotonické hmoty, která zatím nebyla pozorována ani v přírodě, ani v experimentech. Tento úspěch by mohl vést k použití fotonů v kvantových výpočtech, nebo dalším, doteď netušeným, možnostem. Výsledky týmu vědců z MIT, Harvard University a dalších institucí vedeném Vladanem Vuletićem a Mikhailem Lukinem byly publikovány v únorovém čísle magazínu Science.

celý článek

Experimenty s intenzivními lasery poskytují první důkazy, že pomocí světla lze zastavit elektrony

12. 02. 2018

Ozařováním elektronů ultra-intenzivním laserem se vědcům podařilo překročit hranice běžné fyziky a přiblížit se kvantovým efektům. Když světlo dopadá na nějaký objekt, část záření se od něj odráží, pokud se však objekt pohybuje velmi rychle a světlo je velmi intenzivní, začnou se dít podivné věci. Například elektrony se mohou natolik rozvibrovat, že zpomalí, protože vibrace spotřebují velké množství energie. Podobný efekt vědci předpokládají také například u černých děr. Týmu na Imperial College London se podařilo provést tuto reakci poprvé v laboratorních podmínkách, výsledky jejich práce byly publikovány v magazínu Physical Review X.

celý článek

Design nového čipu umožní kvantové výpočty a lze vyrobit běžnými postupy v existujících továrnách

21. 12. 2017

Vědecké týmy po celém světě zkoumají cesty, jak navrhnout fungující čip, který dokáže integrovat kvantové interakce. Vědci z australské univerzity teď přišli s postupem, který to umožňuje a zároveň používá standardní komponenty a postupy při výrobě čipů. Nový design čipu umožňuje provádět kvantové kalkulace za použití běžných polovodičů známých jako CMOS (complementary metal-oxide-semiconductor), což je základem běžných moderních čipů.

celý článek