První detekce kolize dvou neutronových hvězd otevřela astrofyzikům oči jako nikdy dříve

Astronomům se poprvé podařilo zachytit událost, na kterou už dlouho čekali - kolizi neutronových hvězd, která by jim mohla pomoci odhalit doposud skrytá fakta o fungování vesmíru. Pomohlo jim k tomu několik teleskopů pozorujících vesmír v různých vlnových délkách jak z povrchu Země, tak z oběžné dráhy a také detekce gravitačních vln. Jedním z prvních závěrů je potvrzení, že velký podíl těžkých kovů ve vesmíru pochází právě z těchto kolizí.

Rentgenový snímek Cassiopeia A

Rentgenový snímek Cassiopeia A pozůstatky z exploze supernovy Cassiopeia A zachycené vesmírnou observatoří NASA Chandra. Ve středu oblaku materiálu vyvrhnutého při hvězdné explozi se nachází neutronová hvězda.





Neutronové hvězdy jsou objekty s velikostí asi 20 kilometrů v průměru, obsahují však tolik hmoty jako celé naše Slunce. Jejich nitro je nesmírně husté a obsahují množství energie. Vědci už dlouho předpovídali, že kolize takových objektů budou nejenže generovat množství energie, ale také povedou k vysvětlení mnoha dalších jevů ve vesmíru.

Samotná detekce této kolize proběhla 17. srpna 2017, kdy vesmírný teleskop Fermi zachytil krátký záblesk gamma paprsků z velmi silné exploze. Tato událost byla následně reportovaná dalším vědeckým týmům po celém světě, aby byla získána pozorování v jiných vlnových délkách. Jedním z těchto týmů byli také vědci z observatoře LIGO, která ihned detekovala gravitační vlny. Celkem se pozorování účastnily desítky teleskopů na Zemi a 4 vesmírné teleskopy (Hubble, Spitzer, Swift a Chandra).

Šlo o teprve pátou detekci gravitačních vln, avšak první, při které bylo detekováno také světlo. Předchozí gravitační vlny totiž pocházely z kolizí černých děr, které byly sice intenzivnější, světlo exploze ale pohlcují.

Zkoumáním pozůstatků této nedávné kolize neutronových hvězd vědci zjistili, že právě takto pravděpodobně vznikla velká část těžkých kovů, které dnes ve vesmíru existují, včetně zlata, rtuti nebo platiny. Nově vzniklá hmota podle analýzy tyto těžké prvky obsahuje.



Podle vědců jsou to právě gravitační vlny a kolize extrémních objektů jako jsou černé díry nebo neutronové hvězdy, které jsou budoucností astronomie 21. století. V nadcházejících letech budou doplňovat optická, infračervená nebo rentgenová pozorování o dosud nepozorované spektrum nových měření.
Více informací k tématu
Líbil se Vám tento článek?

Podpořte tento web sdílením našeho obsahu:

Chcete vědět o dalším článku?

Následujte LIVINGfUTURE na sociálních sítích.


Další zprávy z kategorie Neutronové hvězdy

Rádiové signály z mladého magnetaru vykazují nezvyklé chování, naznačují nepravidelné magnetické pole hvězdy

3. 2. 2021 (novější než zobrazený článek)

Magnetar Swift J1818.0-1607 je nejmladší známá neutronová hvězda, astronomové ji pozorují pouhých 240 let po jejím vzniku. Podle nové studie v magazínu Monthly Notices of the Royal Astronomical Society tento objekt navíc vykazuje neočekávané chování - jeho rádiové pulzy se liší od ostatních magnetarů a zdá se, že má oba magnetické póly na stejné polokouli.

celý článek

Observatoř velikosti celé galaxie ukazuje astronomům náznaky gravitačních vln vzniklých při velkém třesku

13. 1. 2021 (novější než zobrazený článek)

Prostřednictvím sítě International Pulsar Timing Array (IPTA) vědci z celého světa pátrají po gravitačních vlnách, které jsou ozvěnou velkého třesku. Podle teorie by takové gravitační vlny měly vytvářet šum na pozadí, který prostupuje celým vesmírem.

celý článek

Jak rychle se rozpíná vesmír? Výpočet z gravitačních vln vychází pomalejší než u jiných metod

23. 12. 2020 (novější než zobrazený článek)

Vědci zkombinovali měření gravitačních vln, které vznikly kolizí neutronových hvězd, s elektromagnetickým zářením z těchto událostí. Výsledkem jejich výzkumu je nový odhad pro rychlost rozpínání vesmíru. Tzv. hubblova konstanta, která rozpínání vesmíru popisuje, jim vyšla 66 km/s/Mpc, což je méně než vychází například z pozorování reliktního záření, u kterého vychází hodnota hubblovy konstanty mezi 67 a 70 km/s/Mpc.

celý článek

Dvojice teleskopů GECAM bude v gama záření zkoumat události, ve kterých vznikají gravitační vlny

13. 12. 2020 (novější než zobrazený článek)

Čínské centrum pro vesmírnou vědu (National Space Science Center) ve čtvrtek vyslalo na oběžnou dráhu dvojici stejných teleskopů GECAM (Gravitational Wave High-energy Electromagnetic Counterpart All-sky Monitor). Jak už název napovídá, jejich úkolem bude hledání elektromagnetických projevů událostí, ve kterých vznikají gravitační vlny. Lidstvo zatím zná pouze jednu takovou událost - kolize neutronových hvězd.

celý článek

Nejzářivější binární systém detekovaný v gama záření v naší galaxii zřejmě obsahuje magnetar

12. 12. 2020 (novější než zobrazený článek)

Binární hvězda s největší intenzitou gama záření v Mléčné dráze má označení LS 5039 a byla objevena v roce 2005. Tento systém obsahuje jednu masivní hvězdu a jednou malou, kompaktní hvězdu. Nová analýza dat z let 2007 a 2016 nyní ukazuje, že kompaktní složka tohoto systému je zřejmě vysoce magnetizovaná neutronová hvězda, která se označuje jako magnetar.

celý článek

Z blízkého magnetaru vychází záblesky připomínající rychlé rádiové pulzy FRB

25. 11. 2020 (novější než zobrazený článek)

Nová analýza dat z roku 2009 odhalila více informací o zvýšené aktivitě magnetaru 1E 1547.0–5408 v roce 2009. Rentgenové a rádiové záblesky z této neutronové hvězdy se silným magnetickým polem vědcům vzdáleně připomínají FRB signály. Podle jejich nové studie je možné, že magnetary do vesmíru vysílají celou škálu rádiových záblesků, z nichž některé jsou podobné FRB signálům a jiné se blíží běžné aktivitě rádiových pulzarů.

celý článek

Krátký gama záblesk zachycený letos na jaře zřejmě pochází z kolize neutronových hvězd, ve které vznikl magnetar

21. 11. 2020 (novější než zobrazený článek)

Astronomové v dubnu detekovali nezvyklý záblesk z hlubokého vesmíru. Nejprve vesmírný teleskop Swift zachytil krátký gama záření. Potom se do pozorování zapojily další teleskopy zkoumající jiné části elektromagnetického spektra a před astronomy postupně začal vznikat obraz události, která k nezvyklému záblesku vedla - zrod magnetaru.

celý článek