V místě loňské detekce gravitačních vln něco stále silněji září, astrofyzikové zatím neví, co by to mohlo být

V místě, kde byla loni pomocí gravitačních vln historicky poprvé detekována kolize neutronových hvězd, zesiluje intenzita záření v rentgenových i radiových vlnových délkách. Takové chování astrofyzikové neočekávali - předpoklad byl, že emise budou postupně klesat. I když podobné události po určitou dobu svou záři zesilují, po krátké době začnou pohasínat. Nová pozorování pochází z vesmírného rentgenového teleskopu Chandra, který se po několika měsících k místu zaměřil znovu v prosinci.

Kolize neutronových hvězd GW170817, rentgenová pozorování

Kolize neutronových hvězd GW170817, rentgenová pozorování Vlevo je snímek z vesmírného teleskopu Chandra ze srpna 2017, který zobrazuje kolizi neutronových hvězd GW170817 v rentgenovém záření. Vpravo je snímek ze stejného teleskopu z prosince 2017, kde je GW170817 zřetelně silnější než byla v srpnu.



17. srpna 2017, necelé dvě sekundy po detekci gravitačních vln (označované jako GW170817) dorazil k Zemi záblesk gama záření detekovaný teleskopem Fermi (tato událost dostala označení GRB170817A). S těmito dvěma událostmi už měli astronomové dostatek informací pro upřesnění lokace, ze které tyto signály pochází, a začali hledat evidenci v dalších vlnových délkách. To se podařilo po asi 11 hodinách v galaxii NGC 4993 vzdálené 138 milionů světelných let (událost AT2017gfo, SSS17a), na kterou se poté zaměřily další observatoře pozorující vesmír od rentgenových vln až po rádiové.

Intenzita rentgenového i radiového záření od objevu neustále rostla. Po 16 dnech od detekce gravitačních vln se však poloha tohoto místa na hvězdné obloze přiblížila Slunci natolik, že nebylo možné provádět další pozorování. Teprve až začátkem prosince (109 dní po první detekci) bylo možné místo opět pozorovat vesmírným teleskopem Chandra.

Nově naměřená intenzita záření v rentgenovém spektru koresponduje s nedávnými radiovými měřeními a je silnější než byla při poslední detekci, než se galaxie NGC 4993 skryla za Sluncem. Nová data poukazují na komplexnější událost, než kterou vědci zpočátku předpokládali. Jedna z teorií předpokládá, že nárazová vlna vygenerovaná při kolizi narazila na oblaka plynů v okolí, která rozžhavila do takové míry, že nyní samy emitují rentgenové a radiové vlny.

Další záhadou pro vědce je, co dříme v místě, kde ke kolizi neutronových děr došlo. Aktuálně se jako nejpravděpodobnější jeví teorie, že po kolizi neutronových hvězd vznikla tzv. hypermasivní neutronová hvězda, která se následně zhroutila do černé díry. Neexistuje však dostatek informací pro potvrzení, nebo vyvrácení této teorie.

"Tahle kolize neutronových hvězd je něco, co jsme doposud neviděli", řekla spoluautorka studie publikované v magazínu Astrophysical Journal Letters Melanie Nynka z kanadské McGill University, "pro astrofyziky je to dárek, který nás nepřestává překvapovat".
Líbil se Vám tento článek?

Podpořte tento web sdílením našeho obsahu:

Chcete vědět o dalším článku?

Následujte LIVINGfUTURE na sociálních sítích.


Líbil se Vám tento článek?

Podpořte tento web sdílením našeho obsahu.

Další zprávy z kategorie
Gravitační vlny

Gravitační vlny ukázaly poprvé na splynutí neutronové hvězdy a černé díry

Vědcům se pomocí detektorů LIGO a Virgo podařilo poprvé pozorovat gravitační vlny z kolize černé díry a neutronové hvězdy. V nové studii vědci popisují hned dvě události, které dělí pouhých 10 dní. Jedná se o první zachycené gravitační vlny z takové události, doposud byly pozorovány pouze kolize dvou černých děr nebo dvou neutronových hvězd.

celý článek

Vědcům se podařilo přivést do kvantového stavu zrcadla observatoře gravitačních vln LIGO

Objekty, které se lidskému oku jeví jako stacionární, ve svém nitru ve skutečnosti ukrývají nespočet vibrujících atomů. Vědci se už dlouhou pokouší tyto vibrace zastavit, aby mohli pozorovat projevy kvantové fyziky. To se doposud dařilo u drobných, nanogramových těles nebo u řídkých oblaků atomů. Nyní se nicméně vědcům poprvé podařilo zcela zastavit vibrace u velkého objektu, využili k tomu observatoř gravitačních vln LIGO.

celý článek

Nezvyklé gravitační vlny GW190521 mohly vzniknout kolizí s primordiální černou dírou

Detekce gravitačních vln GW190521 láme vědcům hlavy. Tento signál indikující dočasné narušení časoprostoru totiž zřejmě pochází z kolize černých děr nezvyklé velikosti - střední. Takové objekty doposud nebyly pozorovány a nebylo ani zřejmé, zda skutečně existují. Podle nové studie mohla jedna z černých děr této kolize pocházet z počátků vesmíru.

celý článek

Za vznikem jediné známé černé díry střední velikosti by mohla být kolize exotických bosonových hvězd

Podle mezinárodního týmu vědců by za událostí, ve které vznikly gravitační vlny GW190521, mohla ve skutečnosti být kolize bosonových hvězd. Tato kategorie hvězd zatím nebyla nikdy pozorována a existuje pouze v teoriích. Ke svému závěru vědci došli na základě počítačových simulací kolizí bosonových hvězd, které se nápadně podobají detekovanému signálu detektory gravitačních vln LIGO a Virgo.

celý článek

Procházejte si kolize černých děr a neutronových hvězd v katalogu detekovaných gravitačních vln

Gravitační vlny byly poprvé zachyceny v roce 2015. Od té doby detektory LIGO v USA a Virgo v Itálii desítky kandidátských událostí z nichž 50 bylo potvrzeno. Právě tyto detekce gravitačních vln si nyní můžete přehledně procházet v nově publikovaném katalogu. Obsahuje informace o objektech, jejichž kolize vedla ke vzniku gravitačních vln, i o výsledcích této kolize.

celý článek

Observatoř velikosti celé galaxie ukazuje astronomům náznaky gravitačních vln vzniklých při velkém třesku

Prostřednictvím sítě International Pulsar Timing Array (IPTA) vědci z celého světa pátrají po gravitačních vlnách, které jsou ozvěnou velkého třesku. Podle teorie by takové gravitační vlny měly vytvářet šum na pozadí, který prostupuje celým vesmírem.

celý článek

Jak rychle se rozpíná vesmír? Výpočet z gravitačních vln vychází pomalejší než u jiných metod

Vědci zkombinovali měření gravitačních vln, které vznikly kolizí neutronových hvězd, s elektromagnetickým zářením z těchto událostí. Výsledkem jejich výzkumu je nový odhad pro rychlost rozpínání vesmíru. Tzv. hubblova konstanta, která rozpínání vesmíru popisuje, jim vyšla 66 km/s/Mpc, což je méně než vychází například z pozorování reliktního záření, u kterého vychází hodnota hubblovy konstanty mezi 67 a 70 km/s/Mpc.

celý článek