Teleskopy na oběžné dráze odhalily existenci nejmladší známé neutronové hvězdy

Pozorování vesmírným rentgenovým teleskopem XMM-Newton odhalila zatím nejmladší známý magnetar. Tuto neutronovou hvězdu s velmi silným magnetickým polem astronomové pozorují pouhých 240 let po jejím vzniku. To je nejmladší pozorovaná neutronová hvězda ze zhruba 3 tisícovek doposud identifikovaných v Mléčné dráze. Identifikace takto mladých objektů v hlubokém vesmíru je pro vědce unikátní příležitostí poznat procesy, které k jejich vzniku vedou.

Neutronová hvězda, magnetické pole

Neutronová hvězda, magnetické pole Simulace možného rozložení magnetického pole neutronové hvězdy J0030+0451.



Neutronové hvězdy

Neutronové hvězdy jsou malé objekty dosahující průměru do 20 kilometrů, které však mají vysokou hmotnost a tedy i hustotu. Jejich hmotnost se pohybuje mezi 2 - 3 hmotnostmi Slunce. Vznikají na konci života hvězd, jejichž hmotnost se pohybuje mezi 10 a 30 slunečními hmotnostmi (z menších objektů vznikají bílé trpaslíky a z větších černé díry). Nejrychleji rotující neutronová hvězda PSR J1748-2446ad se kolem svojí osy otočí více než 700x za sekundu.

Typy neutronových hvězd

Pulzar Neutronové hvězdy, které naším směrem vysílají proudy radiace a rotují, se jeví jako pulzující hvězdy. Pulzary mají pravidelnou a specifickou periodu rotace a mohou být využívány k orientaci sond ve vesmíru. Magnetar Neutronová hvězda s extrémně silným magnetickým polem, které dosahuje až k 1011 tesla. Tyto hvězdy rotují ještě rychleji než běžné neutronové hvězdy.
Magnetar s označením Swift J1818.0−1607 se nachází v Mléčné dráze 15 000 světelných let daleko. Byl objeven teprve letos v březnu vesmírnou observatoří Swift. Pozorování teleskopu XMM-Newton jej odhalila při jedné z energetických erupcí, které život neutronových hvězd provází.

Magnetar Swift J1818.0−1607 rotuje nezvykle rychle - otočí se kolem svojí osy jednou za 1,36 sekundy. Podle vědců má hmotnost až dvou sluncí a v průměru dosahuje zhruba 25 kilometrů. Na rozdíl od ostatních magnetarů je Swift J1818.0−1607 pozorovatelný nejen v rentgenovém spektru, ale také v rádiovém.

Vznik magnetarů i dalších druhů neutronových hvězd provází exploze supernovy. Je možné, že supernova, ve které vznikl magnetar Swift J1818.0−1607 byla před 240 lety pozorovatelná i ze Země. 
Více informací k tématu
Líbil se Vám tento článek?

Podpořte tento web sdílením našeho obsahu:

Chcete vědět o dalším článku?

Následujte LIVINGfUTURE na sociálních sítích.


Další zprávy z kategorie Magnetary

Nejzářivější binární systém detekovaný v gama záření v naší galaxii zřejmě obsahuje magnetar

12. 12. 2020 (novější než zobrazený článek)

Binární hvězda s největší intenzitou gama záření v Mléčné dráze má označení LS 5039 a byla objevena v roce 2005. Tento systém obsahuje jednu masivní hvězdu a jednou malou, kompaktní hvězdu. Nová analýza dat z let 2007 a 2016 nyní ukazuje, že kompaktní složka tohoto systému je zřejmě vysoce magnetizovaná neutronová hvězda, která se označuje jako magnetar.

celý článek

Z blízkého magnetaru vychází záblesky připomínající rychlé rádiové pulzy FRB

25. 11. 2020 (novější než zobrazený článek)

Nová analýza dat z roku 2009 odhalila více informací o zvýšené aktivitě magnetaru 1E 1547.0–5408 v roce 2009. Rentgenové a rádiové záblesky z této neutronové hvězdy se silným magnetickým polem vědcům vzdáleně připomínají FRB signály. Podle jejich nové studie je možné, že magnetary do vesmíru vysílají celou škálu rádiových záblesků, z nichž některé jsou podobné FRB signálům a jiné se blíží běžné aktivitě rádiových pulzarů.

celý článek

Krátký gama záblesk zachycený letos na jaře zřejmě pochází z kolize neutronových hvězd, ve které vznikl magnetar

21. 11. 2020 (novější než zobrazený článek)

Astronomové v dubnu detekovali nezvyklý záblesk z hlubokého vesmíru. Nejprve vesmírný teleskop Swift zachytil krátký gama záření. Potom se do pozorování zapojily další teleskopy zkoumající jiné části elektromagnetického spektra a před astronomy postupně začal vznikat obraz události, která k nezvyklému záblesku vedla - zrod magnetaru.

celý článek

První zdroj FRB signálu v naší galaxii se znovu ozval třemi intenzivními milisekundovými záblesky

23. 10. 2020 (novější než zobrazený článek)

V dubnu astronomové detekovali první FRB signál přicházející od hvězdy z naší vlastní galaxie. Ze stejného zdroje SGR 1935+2154 v Mléčné dráze byl detekován začátkem října detekován další FRB signál. Zkoumání této hvězdy vědce přibližuje k rozluštění původu těchto signálů s neznámým původem.

celý článek

První přesně změřená vzdálenost magnetaru může vědce přiblížit k rozluštění původu tajemných signálů FRB

21. 9. 2020

Astronomové poprvé přímo změřili vzdálenost magnetaru pomocí paralaxy. Jejich cílem byla neutronová hvězda XTE J1810-197 s původně odhadovanou vzdáleností kolem 10 tisíc světelných let. Nová pozorování teleskopem VLBA (Very Long Baseline Array) tuto vzdálenost zpřesnila na 8 100 světelných let. Tento výzkum by mohl vědce přiblížit k odpovědi na otázku, zda jsou to právě magnetary (neutronové hvězdy s extrémně silným magnetickým polem), které způsobují tajemné rádiové signály FRB přicházející k nám z hlubokého vesmíru.

celý článek

Rádiové emise z blízkého magnetaru se svou strukturou podobají tajemným rychlým rádiovým pulzům FRB

23. 8. 2019

Neutronová hvězda s velmi silným magnetickým polem XTE J1810−197 je jeden z pouze čtyř známých magnetarů, které vysílají do vesmíru rádiové signály. Vědci je nyní analyzovali pomocí teleskopu GMRT (Giant Metrewave Radio Telescope) a zjistili, že jejich struktura se podobá rychlým rádiovým pulzům FRB. Zatím se neví, co je zdrojem FRB signálů, magnetary jsou však jedním z vážných kandidátů.

celý článek

Astronomům se podařilo teprve podruhé najít zdroj tajemného rychlého radiového pulzu FRB

30. 6. 2019

Rychlé rádiové pulzy (Fast Radio Bursts, FRB) byly objeveny teprve v roce 2007 a doposud není jisté, co je způsobuje. Až v posledních měsících se jako pravděpodobné začaly jevit supernovy, ve kterých vznikají magnetary - neutronové hvězdy s extrémně silným magnetickým polem. Klíčem k rozpoznání zdroje signálu je poznání jeho zdroje, to se všák zatím podařilo u jediného z několika desítek signálů. Nyní vědci přišli s druhým případem, kdy poznali odkud k nám FRB signál přišel.

celý článek